
Supplementary Materials and Methods 

Study cohort 

Newborn infants were recruited to the birth cohort as part of the international DIABIMMUNE 

study (http://www.diabimmune.org/). Recruitment took place in Espoo, Finland between 

September 2008 and May 2010. Inclusion criteria for this study included receiving either none or 

at least 9 antibiotic courses in the first three years of life. The participating children were 

monitored prospectively for infections, use of antibiotics, and other life events. Data on 

breastfeeding and introduction of complementary foods were registered in a study booklet and 

interview at each study visit (3, 6, 12, 18, 24, and 36 months). Subject metadata is available in 

Table S1. The DIABIMMUNE study was conducted according to the guidelines laid down in the 

Declaration of Helsinki, and all procedures involving human subjects were approved by the local 

ethical committee. The parents gave their written informed voluntary consent prior to sample 

collection. 

 

Stool sample collection and DNA extraction 

Stool samples were collected by the participants’ parents and stored in the household freezer 

(−20°C) until the next scheduled visit to the local study center; samples were then shipped on dry 

ice to the DIABIMMUNE Core Laboratory. Samples were stored at −80°C until shipping to the 

Broad Institute for DNA extraction. DNA extractions from stool were carried out using the 

QIAamp DNA Stool Mini Kit (QIAGEN). 

 

Sequencing and analysis of the 16S rRNA gene and whole-genome shotgun sequencing 



16S rRNA gene sequencing was performed essentially as previously described (3). Taxonomy 

was assigned using version 1.8.0 of Qiime (54) and the Greengenes reference database of OTUs 

(55). A mean sequence depth of 48,131 per sample was obtained, and samples with less than 

3,000 sequences were excluded from analysis. 

We selected 240 samples for whole-genome shotgun sequencing (also referred to as 

metagenomic sequencing) based on two criteria: (1) samples from all children at ages 2, 12, 24, 

and 36 months, and (2) at least four samples before and after selected antibiotic treatments (with 

minimal additional treatments in this time period).  

 

Metagenome library construction 

Metagenomic DNA samples were quantified by Quant-iT PicoGreen dsDNA Assay (Life 

Technologies) and normalized to a concentration of 50 pg µL-1. Illumina sequencing libraries 

were prepared from 100-250 pg DNA using the Nextera XT DNA Library Preparation kit 

(Illumina) according to the manufacturer’s recommended protocol, with reaction volumes scaled 

accordingly. Batches of 24, 48, or 96 libraries were pooled by transferring equal volumes of each 

library using a Labcyte Echo 550 liquid handler. Insert sizes and concentrations for each pooled 

library were determined using an Agilent Bioanalyzer DNA 1000 kit (Agilent Technologies). 

 

Diversity analysis based on 16S rRNA gene sequencing data 

Microbial richness (alpha diversity) was measured using the Chao1 metric, as implemented in 

Qiime (54) version 1.8.0. To account for the decrease in diversity caused by the varying 

sequencing depth, we subsampled each sample to 10,000 reads and reported the average alpha 



diversity across 100 subsampling iterations. 

 

Stability analysis based on 16S rRNA gene sequencing data 

The Jaccard index for a given sample pair is defined as |sample A ⋂ sample B| / |sample A ⋃#

sample B|, i.e. the number of items (here, OTUs) in common between samples A and B divided 

by the total number of items present in either sample A or sample B. Jaccard indices was 

calculated for all within-subject sample pairs; for samples collected 1 month apart, the median of 

the samples was calculated for the overall stability measure per child. 

To estimate the variation in the stability measure per group, we performed the following analysis 

for each group (Abx– and Abx+). We denoted the stability measure of a group by S, where n = 

|S|. We sampled n times with replacement from S, and calculated the variance of the sampled set. 

We performed this step 1,000 times and calculated the standard deviation of these measures.  

 

Analysis of whole-genome shotgun (WGS) sequencing  

WGS libraries were sequenced on the Illumina HiSeq 2500 platform, targeting ~2.5 Gb of 

sequence per sample with 101 bp paired-end reads. Reads were quality controlled by trimming 

low-quality bases, dropping reads below 60 nucleotides, and filtering out potential human 

contamination. Quality controlled samples were profiled taxonomically using MetaPhlAn 2.0 

(40), following Bowtie 2-2.1.0 (56) alignment to the MetaPhlAn 2.0 unique marker database 

(http://huttenhower.sph.harvard.edu/metaphlan2).  

 

Estimating differences between strains 



For each species, we used the output of the ConStrains method, as explained above, and 

extracted the SNPs profiles for all strains in that species across all individuals. We calculated the 

mutation distance between all strain pairs and constructed the phylogenetic tree based on this 

distance matrix, where branch lengths correspond to the mutation distance; trees were 

constructed using the nearest neighbors approach.  

Next, using the phylogenetic tree, we identified the most common recent ancestor (MRCA) for 

each subject, as the root of the minimal sub-tree that contains all strains of that subject as leaves. 

We then calculated for each subject the median distance from its strains to its MRCA, or the 

median distance from the MRCA to all other MRCAs. We used these measures to plot the 

species in fig. S7. 

 

Measuring antibiotic resistance genes 

To detect and quantify the abundance of the antibiotic resistance (AR) genes in our WGS data, 

we used a recently developed tool called shortBRED 

(http://huttenhower.sph.harvard.edu/shortbred). Briefly, given a set of AR protein sequences, 

shortBRED clusters them into similar families based on their sequence, extracts a set of 

distinctive strings ("markers") per family, and then searches for these markers in metagenomic 

data. We did not take into consideration genes that are normally present in the core genome of 

the species and in which point mutations can give rise to antibiotic resistance, as we need very 

high read coverage to clearly identify these mutations. Instead, we focused on genes whose 

presence is sufficient to confer resistance. Specifically, we used the sequences of 3,060 proteins 

from The Comprehensive Antibiotic Resistance Database (45) (http://arpcard.mcmaster.ca/). 



Statistics 

Information regarding statistical tests is included in figure legends and/or in the detailed 

analytical methods above. 
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Fig. S1. Average relative abundance of dominant genera in all 39 children. (A and B) Highly (A) 

and lowly (B) abundant genera are shown, color-coded as in Figure 1C.  

 

  



Figure S2
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Fig. S2. Bifidobacterium abundance together with early feeding data. Samples are plotted by 

their age (x-axis) and their relative abundance of Bifidobacterium species (y-axis), and are 

colored by their early feeding state (exclusive breastfeeding, green; some breastfeeding, blue; no 

breastfeeding, red). Inset shows the number of children with a median Bifidobacterium 

abundance of less than 5%, at each feeding state. 

 

  



Figure S3
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Fig. S3. Individual profiles of Bacteroides abundance together with solid food consumption. 

Data are divided by antibiotic treatment (Abx+, red lines; Abx–, green lines). Light green shading 

represents the time period during which the child consumed solid food. Shaded gray regions 

indicate 95% confidence intervals. The number and order of antibiotic courses are shown with 

each antibiotic class indicated by color.  

 

 

  



Figure S4
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Fig. S4. Consistency of the infant gut microbiome. Shown are distributions of Jaccard indices 

calculated using samples collected 1 month apart either from the same individual (blue) or from 

age-matched samples from different individuals (gray), separated into 6-month periods, with the 

median of each sub-population.  

 

  



Figure S5
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Fig. S5. Microbial trajectories for all children in the study. (A) Stream plots, as in Figure 1C, for 

all individuals. The low Bacteroides group is highlighted in blue and children born by Cesarean 

section are highlighted in red. (B) Average abundance profiles of the Bacteroides and 

Bifidobacterium genera, as in figure S1, differentiating the low Bacteroides group (blue) from all 

other children (black). Shaded gray regions indicate 95% confidence intervals. (C) Median 

contribution of various species (colored bars) to the metabolism of human milk oligosaccharides, 

differentiating the low Bacteroides group (top) from all other children (bottom). 
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Fig. S6. Richness of the infant gut microbiome. Microbial richness (Chao1) of the community as 

a function of age as measured in all samples, using 16S rRNA gene sequencing data. (A) Median 

richness values are shown at 6-month intervals, colored according to three groups: children who 

received antibiotics (red), children with low Bacteroides (blue), and children who received no 

antibiotics (green). (B) Plots are shown for each child, together with antibiotic treatment profile 

(when present). Samples are colored as in (A). The number and order of antibiotic courses are 

shown (colored dots), with each antibiotic class indicated by color.  
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Fig. S7. Strain similarity patterns of abundant species. Species are plotted according to the 

median distance of strains to the child’s most recent common ancestor (MRCA; x-axis), and the 

median distance between all MRCAs (y-axis). “Single-introduction species” cluster at higher y-

axis values.  
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Fig. S8. Strain diversity. (A to E) Phylogenetic trees (as in Fig. 2D) based on the mutation 

distance between all strains of Escherichia coli (A), Faecalibacterium prausnitzii (B), 

Eubacterium rectale (C), Bacteroides fragilis (D) and Bacteroides vulgatus (E). Scale bars of the 

mutation distances are shown per tree. (F-G) Mutation distance distributions (as in Fig. 2E), for 

strains of Escherichia coli (F), and Faecalibacterium prausnitzii (G). (H) Total relative 

abundance of all members of Clostridium clusters IV and XIVa, as measured at age 36 months. 

Box boundaries are the 25th and 75th percentiles, and the median is highlighted. (I) Relative 

abundance of Eubacterium rectale, the most abundant member of the Clostridium clusters IV 

and XIVa, at age 36 months. (J) Strain similarity distribution as in Fig. 2F for the E. rectale 

strains (colored as in Fig. 2F with gray for across-individual comparisons), with a P value for the 

separation of the Abx– and Abx+ distributions (KS-test). 
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Fig. S9. Stability of the infant gut microbiome. Plots as in Figure 3A-D for all subjects in the 

study. Child identifiers are colored as Abx+ (red), low Bacteroides (blue), or Abx– (green). The 

number and order of antibiotic courses are shown with each antibiotic class indicated by color. 

 

  



Figure S10

E003188 E003953 E004628 E004898 E005786 E010481

E011878 E012854 E013505 E014403 E020924 E021235

E023445 E024907 E000823 E001958 E004709 E006493

E010581 E013094 E014086 E016063 E016273 E017497

E019092 E019763 E020570 E021032 E022497 E032966

0

50

100

150

200

250

0

50

100

150

200

250

0

50

100

150

200

250

0

50

100

150

200

250

0

50

100

150

200

250

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

E010682

E021940

E007944

E018286

E035134

0 10 20 30

Age (months)

An
tib

io
tic

 re
sis

ta
nc

e 
ge

ne
 a

bu
nd

an
ce

 (r
pk

m
)

Early resistance

Abx 
courses

Antibiotic class

Aminoglycosides

Cephalosporins

Macrolides

NA

Penicillins

Sulfonamides

E006781

0

500

1000

1500

10 20 300

E021822

0

1000

2000

3000

4000

10 20 300

E006091

0

100

200

300

0 10 20 30

E016426

0

200

400

0 10 20 30



Fig. S10. Abundance profiles for antibiotic resistance (AR) genes. As in Figure 4, abundance of 

AR genes in all children over time, together with the timing of individual antibiotic courses. 

Children with an early abundance of AR genes are highlighted in yellow. 

 

  



Table S1. Clinical variables used in this study including birth mode, early feeding history, and 

antibiotic treatments. 
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